

Managing New Technologies
in the Organization

Brian Goff, M. Eng., MBA

Background

New software technologies are breaking down the barriers

that have kept information from flowing between different

brands of computers and software. First there was the

Internet, the medium that shattered pre-existing models of

deploying Information Technology (IT) solutions. Then there

were new application development tools such as Java and

ASP, which reflected a new generation in software

engineering. Now there are emerging standards such as XML

and SOAP, to which some will say is the proverbial �icing on

the cake.� Vendors will continue to hype their products, as

being capable of creating phenomenal shifts in the software

business that are �no less seismic than the fall of the Berlin

Wall.� With all these new, rapidly growing industry

developments it makes sense for us to attempt to gain further

insight into the dynamics of the technology marketplace at

large, and to focus on what it all means to our clients in the

financial services industry.

The Model

One model commonly discussed during industry analysis is

Porter�s model of competitive influences. As we discuss the

introduction of technology in the organization, it is worthwhile

to briefly consider how Porter�s model might be applied to the

new software industry. It is very important that we clearly

differentiate the development and distribution of Java-based

(or Microsoft�s .NET Framework) applications by users from

the development of new products, for which development

costs can be a significant barrier. For this article, our

perspective is taken from users within an organization who

seek to apply technology to their own business� problems.

Using this perspective, a Porter model analysis might yield the

following conclusions:

Barriers to entry are relatively

low

Notwithstanding budget issues

and internal corporate standards

constraints, it is relatively easy to

introduce new software

engineering technology to an

organization,

Threat of substitutes is high It is not uncommon to see intense

competition to be the �solution

provider of choice� between

departments, agencies or

business groups within

organizations, especially high-

growth orgranizations.

the power of This element is particularly

developer/suppliers interesting because depending

upon concentration; the power of

qualified suppliers can vary. In

fact, in many cases, this becomes

the single most important aspect

in making decisions regarding the

introduction of new technology.

Emerging technologies are

typically characterized by low

provider concentration and

relatively high power. As the

technology matures, this situation

reverses.

Consumer�s wield great buying

power

This factor also varies, but to a

lesser extent, inversely with the

power of developers/suppliers

(see above). As the power of

developers/suppliers diminishes,

the consumer�s buying power

increases, the mitigating factor

being the degree to which the

business drivers for the project

are strategic.

Nonetheless, Porter�s model is more useful for industry

analysis and does not provide good insight into how and why

(or why not) our clients are pursuing object-oriented software

development for their purposes. The SPOT Model and the

Hull 4 Box Theory1 are more aptly suited to explaining the

1 Frank Hull, Fordham University Gradudate School of Business, 1995.

process by which such innovations are introduced to an

organization. Before explaining these models further, some

higher level observations can aid in forming a better

framework for discussion. First, many of our service company

clients such as banks, brokerages, clearing houses,

accounting firms, and insurance companies rely heavily on

computer and software technologies. Second, these

technologies are applied just as often to back-office

operations (similar to the way in which manufacturing

organizations apply technology to production operations) as

they are to front-office (i.e. customer service, promotions,

etc.) operations, in one way or another. It is imperative that

we understand how the use of a new technology is evaluated

by an organization

how a new technology is integrated into an organization

how an organization benefits from the use of a new

technology

 Scale of Operations

Complexity
of

Operations

 Low High

Low

High

 Simple
Batch

 (Dress Making)

Mass
 Production

 (Carburetors)

Complex
Batch

(Laser Gyroscopes)

Flexible
Manufacturing

(Auto Assembly)

Figure 1 - Characteristics of Process Technology

Several theories exist that model the strategic management

of innovation and technology. These models map the

methods by which technology is introduced to an organization

by examining the level and type of technology employed in

their operations. For example, a company with high volume

mass production lines will manage technology differently than

a company that manufactures laser gyroscopes, or from a

company that combines these characteristics and sells large

volumes of highly customized products. An organization�s

production technology can be viewed along two dimensions -

complexity of operations and scale of operations. The

organization will fit into one of four boxes defined by these

dimensions, as shown in Figure 1:

Syst
em

Strategy

RRR
ESI

Organization

Process

Technology

Figure 2 - SPOT Model

The SPOT model addresses the following areas of

technology management: Strategy, Process, Organization,

and Technology (see Figure 2). The principle focus of the

SPOT model is the tradeoff faced by organizations between

investments in research and development that result in

greater product novelty, and investments in projects that yield

process efficiencies and cost reductions. The SPOT model

suggests that organizations can be successful in achieving

greater product novelty/inventiveness (as measured by the

number of new ideas that make it to market) and/or process

efficiencies (as measured by reductions in overhead costs) by

applying a combination of techniques such as Rapid

Reiterative Redesign (RRR), and Early Simultaneous

Involvement (ESI).

The strategy of rapid, reiterative redesign (RRR), proposed

as a �best practice� for Concurrent Engineering effectiveness,

is equally suitable for service organizations as it is for

manufacturing organizations. This concept is little more than

the long-familiar rapid prototyping concept that is found in

reengineering. In fact, these concepts have been made

practical, in part, by the emergence of object-oriented

software tools capable of reuse and rapid tailoring. OOP-

based development environments such as Visual Basic and

Powerbuilder (and now Java) will play an increasingly

important role in our clients� efforts to reengineer and retool.

Early Simultaneous Involvement is another technique used to

improve development efforts. With ESI, companies expect to

maximize the benefits they realize from systems development

by involving the early adoptors of technology (i.e. the

technologists) with the business, or domain, experts (in

service companies, these will be the analysts, underwriters,

traders, researchers, and accountants) earlier in the

development process (see Figure 2). Early Simultaneous

Involvement is only possible if the communication barriers

between the technologists and the domain experts are broken

down. Using OOP-based development environments such as

Visual Basic, we have had higher rates of success by pushing

forward the development of applications in ways that enable

users to see and touch a product much earlier in the project

life cycle. Imagine how impressed our clients will be when

we can combine these capabilities with the ability to more

easily distribute greater functionality across wider geographic

areas and platforms.

Level of
Involvement

Project Life Cycle

Design

Production

Non CE Oriented

CE Oriented

Figure 3 - Early Simultaneous Involvement

Consider the current cost to a corporation for the conversion

to a new suite of software, or the cost of developing and

deploying a new internal application. Currently, the annual

cost of supporting a corporate PC user is $8,000.2

Corporations are weighing the the value of upgrading

software every two years or so. Look at how companies took

a go-slow approach to Windows 95, Windows 98, Windows

2000, Windows XP, and .Net because of the huge costs of

upgrading. The inability of companies to capitalize on the

promises of reusability and ease of use of object software in

general has been the biggest stumbling block for software

technology. Training costs, as well as development and

2 Gartner Group, Inc.

deployment times often exceed projected estimates until the

developers become accomplished object experts.

With the prospect of software becoming smaller in size and

more easily distributable as a direct result of advances in

technology such as Java and the Internet, object oriented

technology can begin to deliver on its promise to be of true

value to the masses. As technology leaders we will are

already becoming familiar with the practical application of

these concepts. As a relatively immature technology,

opportunity abounds.

OOPS
The commercialization of object-oriented software began in

earnest in the 1990�s as numerous companies sprouted and

attempted to proliferate object technology across various

computer hardware platforms. With the emergence of

several object-oriented programming (OOP) standards (i.e.

Object Management Group�s (OMG) Common Object

Request Broker Architecture (CORBA)) and object-oriented

versions of languages such as MS Visual Basic (and yes,

even Cobol), programmers took advantage of the benefits of

this new approach. Similar efforts were underway at large

software development houses such as Microsoft, IBM, and

Apple as well. However, for a long time, the majority of

benefits were realized only in the more technical

communities, not by information technology (IT) consumers at

large. Languages based on objects (i.e. C++), high-end

object-based development environments (i.e. Visual C++),

and specialized versions of cross-platform object

environments (i.e. IntelliCorp�s ProKappa) were embraced, for

the most part, by early adopters and �bleeding� edge

developers. Object technology remained in the early stages

of product maturity. However, the world of software as we

know it has dramatically changed, and along with advances

such as the Internet, object-oriented software now offers

incredible new ways of accessing information and achieving

productivity increases for developers and IT consumers alike.

Through such concepts as reuse, encapsulation, and

polymorphism,3 object-oriented technology facilitates the

creation of modular software components, reusable objects,

and encapsulated applications. Applications designed using

this technology can easily be tailored to fit the business needs

of a company. Unfortunately, spreadsheets, databases, and

word processing software written for one platform still do not

work on others, and software running on the same platform

still doesn�t work well with other programs. Software vendors

have responded by applying object oriented programming

(OOP) techniques to develop large �suite� application

programs that make it appear that these various applications

work together seamlessly. The fruits of OOP have become

widely visible in most commonly used business packages, for

example Microsoft Office, Wordperfect Office Suite and Lotus

Notes.

Today, major software products and industry advances are

evolving from both OOP and the Internet. This is the natural

3 Reuse implies that a segment of code can be used by independent programs without further

development. Encapsulation describes the ability of a unit of software to be functionally independent by

packaging both code (behavior) and data in the same container. Polymorphism is the characteristic of a

software object to be called one name, while applying it to many different contexts.

evolution of the long-recognized trend of faster processors

colliding with faster networks. Although software developers

have forged ahead and delivered better and wider selections

of horizontal and vertically oriented software tools, they have

been frustrated by limited deployment options. Concurrently,

workstation and telecommunications vendors like Sun, DEC

and AT&T have succeeded in establishing truly global

network connections (and let�s not forget the hard work and

assistance of NASA in �installing� the necessary satellite

connections!).

Java and .Net
All these advances have recently culminated in a software

product called Java. It is not surprising that Java was

developed by Sun Microsystems, the company that has long

been promoting �the network as the system.� Java embodies

two key attributes of the new world of software: it is designed

specifically for the Net, and it is an OOP-derived tool capable

of bringing the benefits of OOP to the masses. One definition

of Java that I recently came across is "a simple, object-

oriented, distributed, interpreted, robust, secure, architecture-

neutral, portable, high-performance, multithreaded, dynamic,

buzzword-compliant, general-purpose programming

language." (Wow!) Java has the potential, in the long term,

to change the way in which consumers obtain and use

software. For the first time, highly functional software will be

on-line and easily accessible to the networked community.

Sun's vision for Java is that its compact applets, many taking

up less than 100,000 bytes, will do a single job well. If a user

wants another feature --say, a spell-checking on a word-

processor, or a graphic chart -- they simply click to fetch

another applet, which arrives in few seconds. Java thus

offers users the tempting prospect of a virtually infinite supply

of just-in-time software, passing the burden of storing it to the

network. In effect, using Java, the Internet will become a

large virtual disk drive capable of storing just about

everything, and by acting like a huge processor, capable of

performing any computer-based task on any platform that can

be connected. [Note: At this time, I�m reserving judgement

on the notion of people throwing away their full-blown

Pentium PC�s in favor of simple, cheap Internet-boxes. It�s

not that I don�t think that these machines will be available, I

just think that people will want to retain substantial processing

power locally. Remember when IS mavens thought X-

terminals would replace workstations?]

