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INTRODUCTION:  
 
AIL Systems, Inc. is a wholly owned subsidiary of Eaton Corporation. The company 
specializes in the design and assembly of electronic countermeasures and avionics 
exclusively for the Department of Defense.  These systems incorporate the latest 
achievements in radar and microwave design and manufacturing and are typically modular 
in design.  
 
As in most organizations, Engineering and Manufacturing are separately organized 
hierarchies.  Engineering includes all functions associated with conception, formulation 
and analysis of the product.  Manufacturing includes all aspects of the process of 
converting raw materials into the designs generated by Engineering.  The Methods 
Engineering Department is tasked with maintaining manufacturing processes and 
procedures. This includes the generation of all paperwork necessary for the assembly of the 
product at each phase of the production process.  The Advanced Manufacturing 
Technologies Department is responsible for blending new technologies with existing 
procedures to improve capabilities.  
 
It is widely recognized that the benefits realized by improving capabilities are more 
leveraged earlier in the design/production cycle.  An organization will attempt to reduce 
errors and waste during production by improving their design and manufacturing planning 
functions.  The process planning function occurs strategically in the manufacturing cycle to 
offer significant savings in each subsequent stage of production.  Process planning is a 
subjective function where the analyst's interpretation of design requirements, personal 
preference, and extent of shop knowledge can cause inconsistencies in the work instruction 
Packages.  The potential for errors on the shop floor is unacceptable.  Furthermore, the 
traditional labor-intensive nature of the execution of this function makes it fertile for 
improvement.  
 
Meth-Gen is a comprehensive Computer Aided Process Planning project which integrates 
artificial intelligence and machine learning (using IntelliCorp’s KEE platform), several 
relational databases (using ORACLE), and CAD/CAM (using Anvil).  The goal is to 
deliver an integrated system that would reduce the overall time to produce work instruction 
packages for electrical and mechanical assemblies, while improving their consistency and 
legibility.  Methods personnel are beginning to realize benefits in generating Production 
guidelines, standards and procedures by incorporating an integrated computer-based 
solution in a semi-automatic fashion.  



PROBLEM DISCUSSION:  
 
A variety of approaches to the process planning problem have been documented during the 
past twenty years or so.  These approaches include the traditional approach, the workbench 
approach, the variant approach and the generative approach.  Briefly, the traditional and 
workbench approaches use well trained planners to examine the engineering information, 
identify similar parts, manually retrieve previously drafted process plans or sequences of 
operations and adapt the old plan or sequence to meet the discrepant requirements of the 
new part.  The disadvantage of inconsistency in these methods was the principal reason for 
pursuing computer-aided solutions at AIL.  
 
The variant system is based upon the automatic identification and retrieval of a 
standardized manufacturing plan resulting from an established decision rule.  The standard 
plan is a permanently established, ordered sequence of steps for a particular category.  
Classification codes are usually applied to identify parts with similar features.  
Continuously enumerating these features and codes will result in many homogeneous 
groups.  Refinement and/or subdivision of these groups is then necessary to reflect the 
capabilities of the-particular manufacturing facility.  
 
The generative model does not depend on any predefined sequence of operations.  Instead, 
it can construct an optimal fabrication or assembly sequence through a series of 
sophisticated algorithms which, generally, operate with a greater level of  
detail than those of a variant system.  Some of the tools that can be employed by 
generative process planners can include decision trees, decision tables, rule-based decision 
trees, constraint-based planning and (recently) expert systems.  Generative process 
planning allows rapid and consistent generation of revised plans when new processes, 
equipment, methods and tooling are introduced in the production process.  
 
Developing practical and/or complete solutions to the Process Planning problem has 
always been difficult.  The principal obstacle has been the transformation of data between 
two very different databases; the product model database and the production database.  The 
product model database is the collection of information produced by the Engineering 
processes.  The production database, similarly, is produced for support of production 
operations.  A subset of the production database is the set of process plans.  These process 
plans, in effect, regulate subsequent production functions.  It is the manufacturing 
engineering- department's responsibility to logically and systematically derive these 
process plans from the information available in the product model database. 
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The transformation of data from one database to the other is typically a two-stage process:  
 
1. Extract a GENERAL process plan from GENERAL part features  
2. Generate DETAILED plans from product model DETAILS 
 
The process planning problem at AIL includes the fabrication and assembly of electrical 
and mechanical parts.  Closer examination reveals that these tasks differ in non-trivial 
ways.  For example, process planning for assembly of PWB’s (Printed Wiring Boards) is 
different from process planning for final assembly configuration.  For one, different tools 
(semi-automatic insertion machines versus screwdriver and pliers) are used.  Furthermore, 
PWB design simplifies a two-dimensional layout problem as opposed to a three-
dimensional configuration problem.  The implication is that varying skill levels are 
required for the different tasks.  
 
Conversely, similarities exist between the different process planning problems.  These 
similarities can be summarized as follows:  
 

 General rules reflect a progressive building process.  
 General rules are common within a particular commodity.  (i.e. Wave Solder must 

follow Component Prep for all PWB's, Cable A must be routed through a hole 
before the connector for Cable A is placed)  

 Detailed rules are based on product features (i.e. Nickel-plated heatsinks must be 
abraded, Sub-assembly A must be installed before Sub-assembly B)  

 
In addition to extracting general and detailed process specifications for a given assembly, 
the complete process planning system must deal with constantly changing product designs 
and production technologies.  A typical program may have many Engineering Change 
Notices (ECN's) during its lifetime.  This phenomenon is common throughout the 
aerospace industry as the systems themselves become more complex.  This complexity 
usually leads to concurrent design and build efforts.  Taxing the Methods Engineering 
department with perpetual ECN activity is also reflected by errors on the shop floor.  
 
The ability to be flexible and to handle exceptions in a changing environment becomes a 
requirement for the organization operating in this mode.  Systems which are built to 
enhance manufacturing capabilities must address this requirement.  Therefore, Meth-Gen 
must provide facilities for accessing and updating process plans for it to be responsive.  
 
The addition of new manufacturing capabilities always represents a change to existing 
'ways of life.' The uneasiness, insecurities and other difficulties that accompany change 
must be addressed by the definition of the problem.  Successful implementations will  
 



require acceptance by the users of the system.  The facilities that the system provides must 
be attractive enough to the user to overcome the fear of change.  
 
In addition to the maintenance of the output of the system, the maintainability of the 
knowledge and functionality contained within the system by the users is an important 
concern. Here again, the rules for acceptability apply.  The user must be isolated from the 
computer and the underlying programs as much as possible.  
 
HISTORY:  
 
Original proof-of-concept models of Meth-Gen were developed on a Symbolics computer 
by the Advanced Computing Technologies Group at AIL using the ART system from 
Inference Corporation.  These models were useful in demonstrating the capability that the 
system can replicate some of the thought processes involved in PWB methodization.  They 
were also useful in demonstrating pitfalls that we wanted to avoid in expert system 
development.  For example, the learning curve associated with the non-intuitive ART code 
indicated that development costs and time would be higher than acceptable.  This meant 
that maintenance costs for the system would be great, if indeed the system could be 
maintained by the users.  Lastly, an excessive amount of code was needed to generate the 
graphics that are incorporated in the Work Instructions.  This Lisp-based graphics code 
was very slow and inefficient.  
 
During this period of education, we sought a low cost, entry-level expert system 
development tool as a basis for further conceptual definition of Meth-Gen.  We ran TX's 
Personal Consultant Plus on an IBM PC AT and found it to be a good learning 
environment.  We began to learn more about the interaction of frames and rules,  
rule chaining strategies and interfaces with both databases and the user.  However, we 
quickly realized the limitations of small-scale tools.  Specifically, the lag in system 
performance became noticeable even after only a few rules, frames and database  
queries were linked together.  The ability to edit these elements and to interpret their many, 
increasingly complex relationships also was becoming a problem because of the limited 
capabilities of the tools.  
 
It became clear that explicit control that was necessary to make the application perform as 
required would force us to develop more Lisp code than we originally wished. Lisp is a 
commonly used programming language for expert systems because of its ability to 
manipulate symbols well.  We found Lisp to be relatively easy to learn (with computing 
fundamentals a prerequisite) and very powerful for quickly writing complex functions.  
Lisp, however, has some negative traits.  It tends to run more slowly than other 
programming languages and has substantial CPU requirements.  The nature of Lisp is to 
use as much computer memory as it can find before it stops itself, executes a 'garbage 
collection"  
 



process, and then continues processing (this type of 'stop and copy" garbage collection 
forces the user to wait). Usually, this is more of a nuisance than an obstacle.  The memory 
and CPU requirements became readily apparent as the body of Lisp code grew.  
 
The choices for hardware and software were closely related because many of the software 
products under consideration were just emerging in the marketplace.  The principal expert 
system software packages that were reviewed were Inference's ART, IntelliCorp's KEE, 
TI's Personal Consultant and Carnegie Group's KnowledgeCraft.  The selection was 
limited to these packages because, at the time, these vendors had well established 
consulting services.  We anticipated using these services to scale up the learning curve 
more rapidly.  Later, we found that these services were unneeded, mostly because of our 
rapid understanding of the tools and the availability of internal resources.  
 
We used this knowledge, along with the extensive consultations with the various vendors, 
to settle on KEE as the expert system development tool for Meth-Gen.  The features of 
KEE that were pivotal in our choice were KEE's graphic representation of knowledge 
bases, full support of both frame and rule knowledge representation structures, the 
effective use of 'Active images' and the "Tell and Ask" natural idiomatic syntax of rule 
coding.  
 
Active Images are prebuilt, fully functional input and output objects such as pushbuttons, 
gauges, meters and display windows.  Simply put, they allow the user to input information 
and to monitor the state of the system by just using a mouse (instead of the keyboard).  By 
attaching Active Images to a slot in a frame, a method function (different from Methods 
Engineering) can be triggered when the button is pushed.  A method function is a Lisp 
function that can contain any common programming construct (i.e. loops, conditionals, 
assignments, etc.) as well as embedded KEE functions, calls to other Lisp functions, calls 
to the operating system and calls to external functions.  Since KEE functions provide 
access and control over all objects in the KEE environment, and, since all Active Images 
are KEE objects, control over these images is also exercised through method functions.  
These features were combined with IntelliCorp's position in the marketplace to give the 
company its position in our CIM plans.  
 
Similarly, the importance that strategic value played in the decision of a database product 
narrowed the choices to ORACLE and DEC's RDB.  The idea was to invest in a database 
product that would satisfy the requirements of future applications beyond Meth-Gen.  The 
most important functional factors in this decision were the ability to access data from a 
programming language (C or Lisp) and SQL capability.  Ultimately, the capability, 
portability and support available with the ORACLE product caused it to be the product of 
choice.  
 



ARCHITECTURE:  
 
We can now begin to formulate an architecture of the process planning system.  Three 
functional areas were immediately apparent:  
 

1. Expert system 
2. Database  
3. Graphics  

 
To design Meth-Gen for extendibility to other commodities, we sought to modularize as 
many of the working components as possible.  This modular approach would allow us to 
"remove' and "install" the appropriate chunks of methodization knowledge upon demand.  
in this fashion, we could build a library of functions that would help to standardize the 
user, application, file and system interfaces.  
 
Object-oriented programming, by nature, supports a modular programming style.  In 
addition, KEE offers a variety of tools that facilitate knowledge aggregation in the form of 
knowledge bases.  As a matter of fact, the KEE package is built in the same fashion; a set 
of 'System KB's" that logically support and group the software's various capabilities.  
These functions allow the developer to create new knowledge bases, define frames and 
slots (also called objects and attributes), define methods for retrieving attribute values and 
link Active Images to monitor attribute values.  Extensive facilities to define and edit rule- 
structures, forward and backward chaining strategies and complex reasoning are also 
provided.  
 
Using these tools, we separated the methods engineering expertise into the following 
groups:  
 

1. Parts  
2. Manufacturing Procedures (Instructions) 
3. Agendas (Process Flows)  
4. Rules  

 
Each knowledge base contains a taxonomy, or classification, of logically related entities.  
For example, displaying the Parts Knowledge Base will graphically illustrate the 
breakdown of parts as such:  
 
 

[Figure of binomial tree structure(s)] 
 



Each entity in the knowledge base (in this case, parts) 'inherits" the attributes, or features, 
of the class of parts it belongs to.  The other knowledge bases are defined similarly.  In this 
manner, the methods analyst can alter a part's tooling or fixture number (in the Parts 
Knowledge Base), or the content of a manufacturing instruction (in the Procedures 
Knowledge Base) by merely changing the value of the attribute of the entity that represents 
that part or instruction.  
 
The need for the database became apparent when we uncovered the many part features that 
are considered in the PWB methodization process.  Both assembly-specific and part-
specific data elements are used in the decision-making processes.  Assembly-specific data 
is run-time specific and would require only temporary storage in the database.  Part-
specific data refers to the features of the parts that indicate alternative production methods 
during methodization.  This feature data rarely changes and would be stored permanently 
in the Meth-Gen database.  
 
Obviously, we had a requirement for data elements to be transferred between the expert 
system and the database.  Ideally, we would extend Lisp calls to make direct database 
queries.  Unfortunately, few database systems support Lisp access capability.  However, 
many databases (including ORACLE) allow queries from functions embedded in programs 
written in the C language.  Unfortunately, the only data structures that can be easily passed 
from C to Lisp are simple pointers or numbers (Intellicorp markets tools to effectively 
embed SQL database queries in KEE code, however, we felt that the cost of this capability 
was too prohibitive).  For the sake of expediency, we chose to write C programs that would 
create flat textual files that could be read by the Lisp programs.  These C programs contain 
SQL statements that are pre-compiled by the Pro-C compiler from ORACLE.  The C 
executable program files are then called on demand via Lisp calls to the operating system.  
 
The development of these C programs was difficult because of the requirement to make 
them independent of the data that was being handled.  Specifically, we intended to expand 
data tables in the data base as part of normal Meth-Gen maintenance. During processing, 
some of these programs will generate SQL statements "on-the-fly" depending upon the 
current context of the query and the current contents of the database.  Since production use 
of the system was a design requirement, these C programs had to be written so that the user 
was isolated from the activity performed on the database.  
 
The graphics module operates relatively independently from the expert system and the 
database.  The output of the expert system is fed to the graphics module for processing.  
This is the first point at which the analyst will see the work Instruction Package.  He will 
now edit the package using a customized graphics editing environment.  A set of functions 
are provided through a common CAD-type input tablet.  The editing phase consists of 
construction and adding visual aids and notes to the Operation Sheets.  Upon approval, the 
analyst will print the final copy of the Work Instruction Package for distribution to the 
shop floor.  
 



USING Meth-Gen:  
 
Meth-Gen functions as an automated assistant. The analyst is first presented with a main 
panel from which the different phases of PWB methodization are accessible. These phases 
include:  
 

 Initiating the methodization process  
 Retrieving as much data and information as possible  
 Considering the manufacturing processes step by step from a predefined list of 

operations  

 Identifying the necessary operations and associating the relevant manufacturing 
instructions  

 Creating the output  
 Reviewing and editing the output  
 Printing the final documentation  

 
Meth-Gen is required to act as an assistant for several reasons.  First, thousands of parts 
can be used to produce printed wiring boards.  While group technology concepts can be 
applied to create generalizations, exceptions will always occur. The system must be able to 
incorporate Exception information from the analyst during the session and respond to it 
correctly.  Secondly, not all the information needed to perform complete methodization is 
available in the Meth-Gen database.  In these cases, the analyst must refer to engineering 
drawings and visually interpret many things.  For example, Meth-Gen needs to know if ink 
appears on any metallic surfaces on the assembly.  The response to this question will 
influence the manufacturing process for that assembly.  Finally, the expert system cannot 
and should not replicate every aspect of the analyst's capabilities.  New insight and ideas 
about what should be and what should not be included in the system, as well as how the 
system itself is utilized, should be encouraged and considered.  
 
The analyst begins using the system by requesting a Parts List for the assembly to be 
methodized.  The assembly-related data such as the quantity to build and the current 
engineering revision level is first entered into Meth-Gen. Meth-Gen prepares the request 
which is transmitted to the Engineering DEC20.  The Parts List is retrieved from the 
remote database and returned to the Meth-Gen system.  Requests can be made for more 
than one assembly at a time.  The Parts List is, in effect, an Engineering Bill of Materials.  
 
Upon receipt of the Parts List from the DEC20, Meth-Gen will process the file to remove 
extraneous spaces, parentheses and irrelevant characters as it loads the data in the Meth-
Gen database.  As its next step, Meth-Gen will begin to match each part on the Parts List 
with the feature data that is permanently stored in the Meth-Gen database.  Feature data 
will include items such as the reference designation of the part, number of pins on a DIP, 
the center-to-center distance of the leads on a discrete component, tooling and fixture 
numbers and the respective class of parts in the Parts Knowledge Base. 



 
If any required feature data item is missing but Meth-Gen can recognize the part family, it 
will ask the user to supply more information about the part.  It will only ask the user for 
feature data germane to that category of part.  It does this by presenting the user with a 
context sensitive ORACLE form.  If a given part is unrecognized, Meth-Gen will ask the 
user if it should remove the part from further consideration by retaining it in the category 
of 'Unrecognized Parts", and thereby continue with the methodization process.  If the user 
does not opt for this option, Meth-Gen aborts the methodization process until the part is 
filed in the permanent database.  
 
Once all the parts have been reviewed for completeness of data, Meth-Gen will call a C 
program that will construct a large, comprehensive data file.  This data file is then read by 
the expert system and each part, and its feature data is installed in the Parts Knowledge 
Base.  Meth-Gen will now look for the presence of another Engineering data file.  This 
assembly-specific data file, if present, will contain coordinate information for each 
component on the printed wiring board assembly. The information contained in these files 
is extracted directly from the Engineering Computer Aided Design system.  We call this 
file the "LNL Data File" because it contains the Location Net List that will be later used by 
the methods analyst to incrementally construct visual aids that will appear on certain 
Operation Sheets.  If found, the records from this file are read into the expert system and 
matched to the reference designation of the parts previously installed.  If this file is not 
found, the methodization process will continue without the benefits of semi-automatic 
visual aid generation.  

 
During the next phase of the methodization, Meth-Gen will begin to ask questions to 
ascertain the necessary information not provided by the feature data.  The questions asked 
are guided by the data thus far provided to Meth-Gen.  For example, Meth-Gen will need 
to identify and group certain types of parts.  These groups form what we call Part Sets.  
Parts that make up a Part Set will be removed from the standard process flow and applied 
at a different manufacturing operation.  A good example would be a capacitor that requires 
sleeving over the leads.  Meth-Gen would recognize the presence of both the capacitors 
and the sleeving from the Parts List and would ask the user to define a Part Set.  These 
parts would then be removed from the standard Semi-Automatic insertion operation and 
placed in a manual Assembly operation.  



When Meth-Gen has accumulated all the information it needs, it will begin to consider the 
manufacturing process step by step.  A set of rules associated with each manufacturing 
operation will determine if that operation is required.  If so, the rule will further conclude 
which manufacturing instruction is retrieved from the Procedures Knowledge Base.  Meth-
Gen continues to identify the parts and instructions relevant to each operation in the 
manufacturing process until all operations have been considered.  At this point, the analyst 
can continue to the next phase of methodizing this assembly, or he can begin to methodize 
another assembly.  By continuing to methodize the same assembly, the analyst will now 
enter the graphics module of Meth-Gen.  
 
The graphics module is utilized in several ways.  The first step is to process the output of 
the expert system.  The expert system's output during the methodization process is a 
collection of GRAPL (GRAphics Programming Language; MCS's proprietary 
programming language used to manipulate entities in the ANVIL 5000 environment) 
program files.  Each program file contains the GRAPL code that will construct an 
Operation Sheet.  In addition, Meth-Gen will create a GRAPL "control" file and a 
keystroke file for each assembly it methodizes.  These files control the loading and 
compilation of the individual page-specific GRAPL files.  
 
Once the GRAPL files have been compiled, Meth-Gen will contain the basis of the Work 
instruction Package in one file.  The user will now edit this file to add visual aids and 
assembly-specific notes.  The user has a customized editing environment that is driven by.  
GRAPL programs are accessible through a tailored tablet pad.  These functions support a 
variety of functions such as scrolling through pages of the Work instruction Package, 
editing textual notes on an Operation Sheet and developing visual aids which consist of 
images of the PWB in various stages of assembly.  Visual aids are constructed by 
executing other files that were created by the expert system.  These files were built using 
the information obtained from the Engineering "LNL Data File." They will retrieve 
predrafted part images for the parts called out by Meth-Gen for a given operation and will 
locate them correctly with respect to the circuit board.  Presently, this library contains 385 
images of electrical and mechanical parts.  
 
DEVELOPMENT EFFORTS:  
 
Meth-Gen currently contains more than 3500 lines of Lisp, C and GRAPL code.  The 
expert system contains more than 440 "static" frames.  These are frames that are permanent 
members of the knowledge bases.  At run-time, anywhere from 2 to 200 frames can be 
"instantiated" (instances of a class are created).  Each of these frames represents a part on 
the Parts List (as described earlier).  We have 35 rules that represent each manufacturing 
process used in the production of PWB’s.  
 



Development of the code for each of the Meth-Gen modules began in September 1987 
following a two-week training course in using KEE. The training course was attended by 
the full-time knowledge engineer (Brian Goff) and the full-time domain expert (the part-
time knowledge engineer was already familiar with the product).  The first substantial 
prototype of the expert system was demonstrated six months later in February 1988.  
(Actually, a working expert system was ready several weeks before this.  The 
demonstration was delayed bringing the database functionality up to par.)  
 
In July 1988 we decided to move the system into the production environment for beta-test.  
We felt that this would be useful to temper some of the anxious anticipation of the system 
as well as to begin bringing the users up to speed.  During the next six months we 
encountered a great deal of development-related issues.  These were requests by the users 
to incorporate additional functionality that was previously unforeseen.  For example, we 
found that significant savings would be leveraged by coding tasks that were expected to be 
handled in the graphics editing phase.  Consequently, a great deal of functionality was 
added to the system during this period.  Meth-Gen reached the point where it had 
demonstrated savings and was committed to production use as of January 1, 1989.  
Currently, there are two workstations and two methods analysts trained in the use of the 
system.  
 
The most prominent obstacle encountered during the implementation phase of Meth-Gen 
was in labeling it a 'production system.'  The maintenance of the system has consistently 
required frequent attention by a group of highly skilled engineers (members of the 
development team).  This, in effect, has created a layer of intervention between the expert 
knowledge and the users of that knowledge.  To adequately satisfy the design goal of 
delivering a system to the Methods Engineering department, the system's implementation 
must progress from "controlled" use to "production" use by people with a very different 
skill set.  
 
The high level of attention required by Meth-Gen is directly due to the high level of 
complexity that is hidden from the user.  This level of complexity is not unusual in expert 
systems of this magnitude.  The most influential factor that determines system complexity 
is the problem or application itself.   It is often quoted that the decision to use an expert 
system to solve a problem requires the selection of an appropriate problem.  The process 
planning problem, as mentioned earlier, is not a trivial problem.  
 



To understand where this complexity is derived from, we can consider the development of 
an expert system more closely.  To build the expert system, the knowledge engineer must 
first study the domain and the expert's knowledge on a level that is independent of the 
details associated with the expert system's implementation.  The knowledge engineer must 
choose a mechanism appropriate for the representation of the kind of knowledge.  The 
choice of the knowledge representation mechanism is driven by how easily it allows 
knowledge capture.  In addition, the more direct that the expert's knowledge is mapped into 
the representational structure, the greater the validity of the implementation will be.  
 
In Meth-Gen, we have used frame representation extensively to model certain kinds of 
knowledge about the PWB methodization process. The efficiencies experienced are 
reflected by the fact that the thousands of parts are reduced to several groups (simple group 
technology) and that each group will implicitly inherit a set of features.  Consequently, 
Meth-Gen knows immediately what features to expect for a given part in each class of 
parts.  Furthermore, the great deal of knowledge included in these structures means that 
only 35 rules were required in the system. The interrelationship of the rule structures is 
unimportant to Meth-Gen.  If the rule is written with the proper conventions, Meth-Gen 
will consider it during any methodization session.  
 
The complexity of Meth-Gen stems from the great deal of Lisp code that ties together the 
frame and rule representation structures.  The Lisp code is used to represent the procedural 
aspects of the methodization process.  For example, many of the repetitive tasks that Meth-
Gen automates include retrieving the Parts List, recognizing parts and part features, 
generating the format of the Operation Sheet and entering information in various sections 
of the Operation Sheet.  
 
SUMMARY:  
 
There are several issues to review in summary: modularity and extendibility, robustness 
and benefits. In each of these cases we can point to what we feel are successes as well as 
areas where we would have hoped for greater success.  
 
In the area of modularity and extendibility, we have successfully captured and modularized 
a great deal of the heuristic knowledge used to methodize Printed Wiring Boards.  For 
example, the knowledge base of manufacturing instructions is independent of the parts 
used in production.  This means that the Procedures Knowledge Base can be removed, 
modified, expanded or applied to a different parts taxonomy.  Similarly, the Agendas 
(Process Flow) Knowledge Base and its underlying mechanisms and methods can be 
extracted and used with completely different Parts and Procedures Knowledge Bases.  



The Meth-Gen database is constantly expanding to include new parts.  These parts are not 
restricted to electrical parts. In the course of time, this database of part features will grow 
to be an asset to AIL. The customized graphics tools that the methods analyst has available 
to him are also not restricted to the development of PWB Work Instruction Packages.  
These tools will be extended to other applications in the Methods Engineering Department.  
 
Another area where we experience the benefits of modularity is the relative independence 
of each phase of processing during PWB methodization.  An analyst has the flexibility to 
retrieve several Parts Lists from Engineering at once if, for example, he is aware that the 
network will be down for maintenance.  He can continue to methodize these assemblies 
without interruption.  If the expert system or the database is unavailable because of updates 
to the software or new development activity, the analyst can continue to edit Work 
Instruction Packages that have reached the stage of graphic editing.  
 
An area where the extendibility of the Meth-Gen modules has been disappointing is in its 
extendibility to three dimensional complex assemblies.  We are currently trying to 
understand how the methodization process for these complex assemblies can be modeled 
after the processes used by PWB methodization.  This will be done by reviewing the 
similarities of methods described earlier.  Also, the great deal of Lisp code will have to be 
reviewed to understand the magnitude of modifications.  
 
The related topic of robustness addresses the completeness of the solution.  We have 
successfully captured enough knowledge to methodize any given Printed Wiring Board 
built at AIL to approximately 90 percent completion in a matter of a few hours.  
The remaining 10 percent of effort is in the final editing of the Work Instruction Package 
using the graphics tools.  The fact that this small fraction of incompleteness takes almost as 
much time to process as the initial phases of methodization indicates the relative 
inefficiency of the task.  At this point, we have reached the limit of the level of 
functionality that makes sense to incorporate in the expert system.  This forces us to rely 
on the analyst's CAD skills while we seek improvements in the Work Instruction Package 
editing phase.  Note that this is not necessarily without value because these skills will be 
employed when the graphic tools are used for other applications.  
 
The benefits in using Meth-Gen are beginning to become apparent as the work instruction 
Packages are being distributed to the shop floor.  Preliminary evaluation indicates 
improved throughput in the methods Engineering department because of a reduction in 
cycle time.  Each Work Instruction Package is being released with more consistent content, 
regardless of the analyst who created it.  We have seen that small changes can be made to 
an Operation Sheet relatively quickly.  Substantial changes are also responded to quickly 
by completely re-methodizing the assembly (it is sometimes advantageous to utilize Meth-
Gen's efficiency by completely re-methodizing the assembly).  Most importantly, the 
quality of the Work Instruction Package that was modified to incorporate an ECN  
is now the same quality as the original Work Instruction Package.  The result, which is the 
desired result, is that we will see fewer interpretation errors on the shop floor.  



 
Meth-Gen has a variety of opportunities which can now be pursued.  It can be used as a 
front end to a paperless shop environment since its output is a document in electronic form. 
It can be linked to the Computerized work measurement System to automatically retrieve 
setup and run times for the production processes it calls out.  We can incorporate these 
standards in a sophisticated simulation of the production environment based upon the fact 
that Meth-Gen knows each assembly's process flow.  This can also be expanded to allow 
Meth-Gen to generate optimal assembly routes based upon real time data from the shop 
floor.  And, of course, we expect to expand the use of Meth-Gen to other programs and 
commodities.  
 
 

 


