

METH-GEN

An AI-based Computer-Aided Process Planning System

for

Advanced Printed Wiring Board Assembly

16 February 1989

Brian Goff

EATON/AIL Systems

New York, NY

We would like to thank the following people for their contributions to making this vision a
reality:

Dan Agresti
Cono Carrano
Matthew DiGiorgi
Brian Ford
Chris Hines
Stephen Howe
Steven Lecarie
Kathy Pomerenke
Ed Pines
Jeff Salvage
Gary Wladyka

We would also like to thank the management of AIL for their guidance and support
throughout the project's sometimes tenuous but always exciting times.

INTRODUCTION:

AIL Systems, Inc. is a wholly owned subsidiary of Eaton Corporation. The company
specializes in the design and assembly of electronic countermeasures and avionics
exclusively for the Department of Defense. These systems incorporate the latest
achievements in radar and microwave design and manufacturing and are typically modular
in design.

As in most organizations, Engineering and Manufacturing are separately organized
hierarchies. Engineering includes all functions associated with conception, formulation
and analysis of the product. Manufacturing includes all aspects of the process of
converting raw materials into the designs generated by Engineering. The Methods
Engineering Department is tasked with maintaining manufacturing processes and
procedures. This includes the generation of all paperwork necessary for the assembly of the
product at each phase of the production process. The Advanced Manufacturing
Technologies Department is responsible for blending new technologies with existing
procedures to improve capabilities.

It is widely recognized that the benefits realized by improving capabilities are more
leveraged earlier in the design/production cycle. An organization will attempt to reduce
errors and waste during production by improving their design and manufacturing planning
functions. The process planning function occurs strategically in the manufacturing cycle to
offer significant savings in each subsequent stage of production. Process planning is a
subjective function where the analyst's interpretation of design requirements, personal
preference, and extent of shop knowledge can cause inconsistencies in the work instruction
Packages. The potential for errors on the shop floor is unacceptable. Furthermore, the
traditional labor-intensive nature of the execution of this function makes it fertile for
improvement.

Meth-Gen is a comprehensive Computer Aided Process Planning project which integrates
artificial intelligence and machine learning (using IntelliCorp’s KEE platform), several
relational databases (using ORACLE), and CAD/CAM (using Anvil). The goal is to
deliver an integrated system that would reduce the overall time to produce work instruction
packages for electrical and mechanical assemblies, while improving their consistency and
legibility. Methods personnel are beginning to realize benefits in generating Production
guidelines, standards and procedures by incorporating an integrated computer-based
solution in a semi-automatic fashion.

PROBLEM DISCUSSION:

A variety of approaches to the process planning problem have been documented during the
past twenty years or so. These approaches include the traditional approach, the workbench
approach, the variant approach and the generative approach. Briefly, the traditional and
workbench approaches use well trained planners to examine the engineering information,
identify similar parts, manually retrieve previously drafted process plans or sequences of
operations and adapt the old plan or sequence to meet the discrepant requirements of the
new part. The disadvantage of inconsistency in these methods was the principal reason for
pursuing computer-aided solutions at AIL.

The variant system is based upon the automatic identification and retrieval of a
standardized manufacturing plan resulting from an established decision rule. The standard
plan is a permanently established, ordered sequence of steps for a particular category.
Classification codes are usually applied to identify parts with similar features.
Continuously enumerating these features and codes will result in many homogeneous
groups. Refinement and/or subdivision of these groups is then necessary to reflect the
capabilities of the-particular manufacturing facility.

The generative model does not depend on any predefined sequence of operations. Instead,
it can construct an optimal fabrication or assembly sequence through a series of
sophisticated algorithms which, generally, operate with a greater level of
detail than those of a variant system. Some of the tools that can be employed by
generative process planners can include decision trees, decision tables, rule-based decision
trees, constraint-based planning and (recently) expert systems. Generative process
planning allows rapid and consistent generation of revised plans when new processes,
equipment, methods and tooling are introduced in the production process.

Developing practical and/or complete solutions to the Process Planning problem has
always been difficult. The principal obstacle has been the transformation of data between
two very different databases; the product model database and the production database. The
product model database is the collection of information produced by the Engineering
processes. The production database, similarly, is produced for support of production
operations. A subset of the production database is the set of process plans. These process
plans, in effect, regulate subsequent production functions. It is the manufacturing
engineering- department's responsibility to logically and systematically derive these
process plans from the information available in the product model database.

METH-GEN AIL SYSTEMS, INC

The transformation of data from one database to the other is typically a two-stage process:

1. Extract a GENERAL process plan from GENERAL part features
2. Generate DETAILED plans from product model DETAILS

The process planning problem at AIL includes the fabrication and assembly of electrical
and mechanical parts. Closer examination reveals that these tasks differ in non-trivial
ways. For example, process planning for assembly of PWB’s (Printed Wiring Boards) is
different from process planning for final assembly configuration. For one, different tools
(semi-automatic insertion machines versus screwdriver and pliers) are used. Furthermore,
PWB design simplifies a two-dimensional layout problem as opposed to a three-
dimensional configuration problem. The implication is that varying skill levels are
required for the different tasks.

Conversely, similarities exist between the different process planning problems. These
similarities can be summarized as follows:

 General rules reflect a progressive building process.
 General rules are common within a particular commodity. (i.e. Wave Solder must

follow Component Prep for all PWB's, Cable A must be routed through a hole
before the connector for Cable A is placed)

 Detailed rules are based on product features (i.e. Nickel-plated heatsinks must be
abraded, Sub-assembly A must be installed before Sub-assembly B)

In addition to extracting general and detailed process specifications for a given assembly,
the complete process planning system must deal with constantly changing product designs
and production technologies. A typical program may have many Engineering Change
Notices (ECN's) during its lifetime. This phenomenon is common throughout the
aerospace industry as the systems themselves become more complex. This complexity
usually leads to concurrent design and build efforts. Taxing the Methods Engineering
department with perpetual ECN activity is also reflected by errors on the shop floor.

The ability to be flexible and to handle exceptions in a changing environment becomes a
requirement for the organization operating in this mode. Systems which are built to
enhance manufacturing capabilities must address this requirement. Therefore, Meth-Gen
must provide facilities for accessing and updating process plans for it to be responsive.

The addition of new manufacturing capabilities always represents a change to existing
'ways of life.' The uneasiness, insecurities and other difficulties that accompany change
must be addressed by the definition of the problem. Successful implementations will

require acceptance by the users of the system. The facilities that the system provides must
be attractive enough to the user to overcome the fear of change.

In addition to the maintenance of the output of the system, the maintainability of the
knowledge and functionality contained within the system by the users is an important
concern. Here again, the rules for acceptability apply. The user must be isolated from the
computer and the underlying programs as much as possible.

HISTORY:

Original proof-of-concept models of Meth-Gen were developed on a Symbolics computer
by the Advanced Computing Technologies Group at AIL using the ART system from
Inference Corporation. These models were useful in demonstrating the capability that the
system can replicate some of the thought processes involved in PWB methodization. They
were also useful in demonstrating pitfalls that we wanted to avoid in expert system
development. For example, the learning curve associated with the non-intuitive ART code
indicated that development costs and time would be higher than acceptable. This meant
that maintenance costs for the system would be great, if indeed the system could be
maintained by the users. Lastly, an excessive amount of code was needed to generate the
graphics that are incorporated in the Work Instructions. This Lisp-based graphics code
was very slow and inefficient.

During this period of education, we sought a low cost, entry-level expert system
development tool as a basis for further conceptual definition of Meth-Gen. We ran TX's
Personal Consultant Plus on an IBM PC AT and found it to be a good learning
environment. We began to learn more about the interaction of frames and rules,
rule chaining strategies and interfaces with both databases and the user. However, we
quickly realized the limitations of small-scale tools. Specifically, the lag in system
performance became noticeable even after only a few rules, frames and database
queries were linked together. The ability to edit these elements and to interpret their many,
increasingly complex relationships also was becoming a problem because of the limited
capabilities of the tools.

It became clear that explicit control that was necessary to make the application perform as
required would force us to develop more Lisp code than we originally wished. Lisp is a
commonly used programming language for expert systems because of its ability to
manipulate symbols well. We found Lisp to be relatively easy to learn (with computing
fundamentals a prerequisite) and very powerful for quickly writing complex functions.
Lisp, however, has some negative traits. It tends to run more slowly than other
programming languages and has substantial CPU requirements. The nature of Lisp is to
use as much computer memory as it can find before it stops itself, executes a 'garbage
collection"

process, and then continues processing (this type of 'stop and copy" garbage collection
forces the user to wait). Usually, this is more of a nuisance than an obstacle. The memory
and CPU requirements became readily apparent as the body of Lisp code grew.

The choices for hardware and software were closely related because many of the software
products under consideration were just emerging in the marketplace. The principal expert
system software packages that were reviewed were Inference's ART, IntelliCorp's KEE,
TI's Personal Consultant and Carnegie Group's KnowledgeCraft. The selection was
limited to these packages because, at the time, these vendors had well established
consulting services. We anticipated using these services to scale up the learning curve
more rapidly. Later, we found that these services were unneeded, mostly because of our
rapid understanding of the tools and the availability of internal resources.

We used this knowledge, along with the extensive consultations with the various vendors,
to settle on KEE as the expert system development tool for Meth-Gen. The features of
KEE that were pivotal in our choice were KEE's graphic representation of knowledge
bases, full support of both frame and rule knowledge representation structures, the
effective use of 'Active images' and the "Tell and Ask" natural idiomatic syntax of rule
coding.

Active Images are prebuilt, fully functional input and output objects such as pushbuttons,
gauges, meters and display windows. Simply put, they allow the user to input information
and to monitor the state of the system by just using a mouse (instead of the keyboard). By
attaching Active Images to a slot in a frame, a method function (different from Methods
Engineering) can be triggered when the button is pushed. A method function is a Lisp
function that can contain any common programming construct (i.e. loops, conditionals,
assignments, etc.) as well as embedded KEE functions, calls to other Lisp functions, calls
to the operating system and calls to external functions. Since KEE functions provide
access and control over all objects in the KEE environment, and, since all Active Images
are KEE objects, control over these images is also exercised through method functions.
These features were combined with IntelliCorp's position in the marketplace to give the
company its position in our CIM plans.

Similarly, the importance that strategic value played in the decision of a database product
narrowed the choices to ORACLE and DEC's RDB. The idea was to invest in a database
product that would satisfy the requirements of future applications beyond Meth-Gen. The
most important functional factors in this decision were the ability to access data from a
programming language (C or Lisp) and SQL capability. Ultimately, the capability,
portability and support available with the ORACLE product caused it to be the product of
choice.

ARCHITECTURE:

We can now begin to formulate an architecture of the process planning system. Three
functional areas were immediately apparent:

1. Expert system
2. Database
3. Graphics

To design Meth-Gen for extendibility to other commodities, we sought to modularize as
many of the working components as possible. This modular approach would allow us to
"remove' and "install" the appropriate chunks of methodization knowledge upon demand.
in this fashion, we could build a library of functions that would help to standardize the
user, application, file and system interfaces.

Object-oriented programming, by nature, supports a modular programming style. In
addition, KEE offers a variety of tools that facilitate knowledge aggregation in the form of
knowledge bases. As a matter of fact, the KEE package is built in the same fashion; a set
of 'System KB's" that logically support and group the software's various capabilities.
These functions allow the developer to create new knowledge bases, define frames and
slots (also called objects and attributes), define methods for retrieving attribute values and
link Active Images to monitor attribute values. Extensive facilities to define and edit rule-
structures, forward and backward chaining strategies and complex reasoning are also
provided.

Using these tools, we separated the methods engineering expertise into the following
groups:

1. Parts
2. Manufacturing Procedures (Instructions)
3. Agendas (Process Flows)
4. Rules

Each knowledge base contains a taxonomy, or classification, of logically related entities.
For example, displaying the Parts Knowledge Base will graphically illustrate the
breakdown of parts as such:

[Figure of binomial tree structure(s)]

Each entity in the knowledge base (in this case, parts) 'inherits" the attributes, or features,
of the class of parts it belongs to. The other knowledge bases are defined similarly. In this
manner, the methods analyst can alter a part's tooling or fixture number (in the Parts
Knowledge Base), or the content of a manufacturing instruction (in the Procedures
Knowledge Base) by merely changing the value of the attribute of the entity that represents
that part or instruction.

The need for the database became apparent when we uncovered the many part features that
are considered in the PWB methodization process. Both assembly-specific and part-
specific data elements are used in the decision-making processes. Assembly-specific data
is run-time specific and would require only temporary storage in the database. Part-
specific data refers to the features of the parts that indicate alternative production methods
during methodization. This feature data rarely changes and would be stored permanently
in the Meth-Gen database.

Obviously, we had a requirement for data elements to be transferred between the expert
system and the database. Ideally, we would extend Lisp calls to make direct database
queries. Unfortunately, few database systems support Lisp access capability. However,
many databases (including ORACLE) allow queries from functions embedded in programs
written in the C language. Unfortunately, the only data structures that can be easily passed
from C to Lisp are simple pointers or numbers (Intellicorp markets tools to effectively
embed SQL database queries in KEE code, however, we felt that the cost of this capability
was too prohibitive). For the sake of expediency, we chose to write C programs that would
create flat textual files that could be read by the Lisp programs. These C programs contain
SQL statements that are pre-compiled by the Pro-C compiler from ORACLE. The C
executable program files are then called on demand via Lisp calls to the operating system.

The development of these C programs was difficult because of the requirement to make
them independent of the data that was being handled. Specifically, we intended to expand
data tables in the data base as part of normal Meth-Gen maintenance. During processing,
some of these programs will generate SQL statements "on-the-fly" depending upon the
current context of the query and the current contents of the database. Since production use
of the system was a design requirement, these C programs had to be written so that the user
was isolated from the activity performed on the database.

The graphics module operates relatively independently from the expert system and the
database. The output of the expert system is fed to the graphics module for processing.
This is the first point at which the analyst will see the work Instruction Package. He will
now edit the package using a customized graphics editing environment. A set of functions
are provided through a common CAD-type input tablet. The editing phase consists of
construction and adding visual aids and notes to the Operation Sheets. Upon approval, the
analyst will print the final copy of the Work Instruction Package for distribution to the
shop floor.

USING Meth-Gen:

Meth-Gen functions as an automated assistant. The analyst is first presented with a main
panel from which the different phases of PWB methodization are accessible. These phases
include:

 Initiating the methodization process
 Retrieving as much data and information as possible
 Considering the manufacturing processes step by step from a predefined list of

operations

 Identifying the necessary operations and associating the relevant manufacturing
instructions

 Creating the output
 Reviewing and editing the output
 Printing the final documentation

Meth-Gen is required to act as an assistant for several reasons. First, thousands of parts
can be used to produce printed wiring boards. While group technology concepts can be
applied to create generalizations, exceptions will always occur. The system must be able to
incorporate Exception information from the analyst during the session and respond to it
correctly. Secondly, not all the information needed to perform complete methodization is
available in the Meth-Gen database. In these cases, the analyst must refer to engineering
drawings and visually interpret many things. For example, Meth-Gen needs to know if ink
appears on any metallic surfaces on the assembly. The response to this question will
influence the manufacturing process for that assembly. Finally, the expert system cannot
and should not replicate every aspect of the analyst's capabilities. New insight and ideas
about what should be and what should not be included in the system, as well as how the
system itself is utilized, should be encouraged and considered.

The analyst begins using the system by requesting a Parts List for the assembly to be
methodized. The assembly-related data such as the quantity to build and the current
engineering revision level is first entered into Meth-Gen. Meth-Gen prepares the request
which is transmitted to the Engineering DEC20. The Parts List is retrieved from the
remote database and returned to the Meth-Gen system. Requests can be made for more
than one assembly at a time. The Parts List is, in effect, an Engineering Bill of Materials.

Upon receipt of the Parts List from the DEC20, Meth-Gen will process the file to remove
extraneous spaces, parentheses and irrelevant characters as it loads the data in the Meth-
Gen database. As its next step, Meth-Gen will begin to match each part on the Parts List
with the feature data that is permanently stored in the Meth-Gen database. Feature data
will include items such as the reference designation of the part, number of pins on a DIP,
the center-to-center distance of the leads on a discrete component, tooling and fixture
numbers and the respective class of parts in the Parts Knowledge Base.

If any required feature data item is missing but Meth-Gen can recognize the part family, it
will ask the user to supply more information about the part. It will only ask the user for
feature data germane to that category of part. It does this by presenting the user with a
context sensitive ORACLE form. If a given part is unrecognized, Meth-Gen will ask the
user if it should remove the part from further consideration by retaining it in the category
of 'Unrecognized Parts", and thereby continue with the methodization process. If the user
does not opt for this option, Meth-Gen aborts the methodization process until the part is
filed in the permanent database.

Once all the parts have been reviewed for completeness of data, Meth-Gen will call a C
program that will construct a large, comprehensive data file. This data file is then read by
the expert system and each part, and its feature data is installed in the Parts Knowledge
Base. Meth-Gen will now look for the presence of another Engineering data file. This
assembly-specific data file, if present, will contain coordinate information for each
component on the printed wiring board assembly. The information contained in these files
is extracted directly from the Engineering Computer Aided Design system. We call this
file the "LNL Data File" because it contains the Location Net List that will be later used by
the methods analyst to incrementally construct visual aids that will appear on certain
Operation Sheets. If found, the records from this file are read into the expert system and
matched to the reference designation of the parts previously installed. If this file is not
found, the methodization process will continue without the benefits of semi-automatic
visual aid generation.

During the next phase of the methodization, Meth-Gen will begin to ask questions to
ascertain the necessary information not provided by the feature data. The questions asked
are guided by the data thus far provided to Meth-Gen. For example, Meth-Gen will need
to identify and group certain types of parts. These groups form what we call Part Sets.
Parts that make up a Part Set will be removed from the standard process flow and applied
at a different manufacturing operation. A good example would be a capacitor that requires
sleeving over the leads. Meth-Gen would recognize the presence of both the capacitors
and the sleeving from the Parts List and would ask the user to define a Part Set. These
parts would then be removed from the standard Semi-Automatic insertion operation and
placed in a manual Assembly operation.

When Meth-Gen has accumulated all the information it needs, it will begin to consider the
manufacturing process step by step. A set of rules associated with each manufacturing
operation will determine if that operation is required. If so, the rule will further conclude
which manufacturing instruction is retrieved from the Procedures Knowledge Base. Meth-
Gen continues to identify the parts and instructions relevant to each operation in the
manufacturing process until all operations have been considered. At this point, the analyst
can continue to the next phase of methodizing this assembly, or he can begin to methodize
another assembly. By continuing to methodize the same assembly, the analyst will now
enter the graphics module of Meth-Gen.

The graphics module is utilized in several ways. The first step is to process the output of
the expert system. The expert system's output during the methodization process is a
collection of GRAPL (GRAphics Programming Language; MCS's proprietary
programming language used to manipulate entities in the ANVIL 5000 environment)
program files. Each program file contains the GRAPL code that will construct an
Operation Sheet. In addition, Meth-Gen will create a GRAPL "control" file and a
keystroke file for each assembly it methodizes. These files control the loading and
compilation of the individual page-specific GRAPL files.

Once the GRAPL files have been compiled, Meth-Gen will contain the basis of the Work
instruction Package in one file. The user will now edit this file to add visual aids and
assembly-specific notes. The user has a customized editing environment that is driven by.
GRAPL programs are accessible through a tailored tablet pad. These functions support a
variety of functions such as scrolling through pages of the Work instruction Package,
editing textual notes on an Operation Sheet and developing visual aids which consist of
images of the PWB in various stages of assembly. Visual aids are constructed by
executing other files that were created by the expert system. These files were built using
the information obtained from the Engineering "LNL Data File." They will retrieve
predrafted part images for the parts called out by Meth-Gen for a given operation and will
locate them correctly with respect to the circuit board. Presently, this library contains 385
images of electrical and mechanical parts.

DEVELOPMENT EFFORTS:

Meth-Gen currently contains more than 3500 lines of Lisp, C and GRAPL code. The
expert system contains more than 440 "static" frames. These are frames that are permanent
members of the knowledge bases. At run-time, anywhere from 2 to 200 frames can be
"instantiated" (instances of a class are created). Each of these frames represents a part on
the Parts List (as described earlier). We have 35 rules that represent each manufacturing
process used in the production of PWB’s.

Development of the code for each of the Meth-Gen modules began in September 1987
following a two-week training course in using KEE. The training course was attended by
the full-time knowledge engineer (Brian Goff) and the full-time domain expert (the part-
time knowledge engineer was already familiar with the product). The first substantial
prototype of the expert system was demonstrated six months later in February 1988.
(Actually, a working expert system was ready several weeks before this. The
demonstration was delayed bringing the database functionality up to par.)

In July 1988 we decided to move the system into the production environment for beta-test.
We felt that this would be useful to temper some of the anxious anticipation of the system
as well as to begin bringing the users up to speed. During the next six months we
encountered a great deal of development-related issues. These were requests by the users
to incorporate additional functionality that was previously unforeseen. For example, we
found that significant savings would be leveraged by coding tasks that were expected to be
handled in the graphics editing phase. Consequently, a great deal of functionality was
added to the system during this period. Meth-Gen reached the point where it had
demonstrated savings and was committed to production use as of January 1, 1989.
Currently, there are two workstations and two methods analysts trained in the use of the
system.

The most prominent obstacle encountered during the implementation phase of Meth-Gen
was in labeling it a 'production system.' The maintenance of the system has consistently
required frequent attention by a group of highly skilled engineers (members of the
development team). This, in effect, has created a layer of intervention between the expert
knowledge and the users of that knowledge. To adequately satisfy the design goal of
delivering a system to the Methods Engineering department, the system's implementation
must progress from "controlled" use to "production" use by people with a very different
skill set.

The high level of attention required by Meth-Gen is directly due to the high level of
complexity that is hidden from the user. This level of complexity is not unusual in expert
systems of this magnitude. The most influential factor that determines system complexity
is the problem or application itself. It is often quoted that the decision to use an expert
system to solve a problem requires the selection of an appropriate problem. The process
planning problem, as mentioned earlier, is not a trivial problem.

To understand where this complexity is derived from, we can consider the development of
an expert system more closely. To build the expert system, the knowledge engineer must
first study the domain and the expert's knowledge on a level that is independent of the
details associated with the expert system's implementation. The knowledge engineer must
choose a mechanism appropriate for the representation of the kind of knowledge. The
choice of the knowledge representation mechanism is driven by how easily it allows
knowledge capture. In addition, the more direct that the expert's knowledge is mapped into
the representational structure, the greater the validity of the implementation will be.

In Meth-Gen, we have used frame representation extensively to model certain kinds of
knowledge about the PWB methodization process. The efficiencies experienced are
reflected by the fact that the thousands of parts are reduced to several groups (simple group
technology) and that each group will implicitly inherit a set of features. Consequently,
Meth-Gen knows immediately what features to expect for a given part in each class of
parts. Furthermore, the great deal of knowledge included in these structures means that
only 35 rules were required in the system. The interrelationship of the rule structures is
unimportant to Meth-Gen. If the rule is written with the proper conventions, Meth-Gen
will consider it during any methodization session.

The complexity of Meth-Gen stems from the great deal of Lisp code that ties together the
frame and rule representation structures. The Lisp code is used to represent the procedural
aspects of the methodization process. For example, many of the repetitive tasks that Meth-
Gen automates include retrieving the Parts List, recognizing parts and part features,
generating the format of the Operation Sheet and entering information in various sections
of the Operation Sheet.

SUMMARY:

There are several issues to review in summary: modularity and extendibility, robustness
and benefits. In each of these cases we can point to what we feel are successes as well as
areas where we would have hoped for greater success.

In the area of modularity and extendibility, we have successfully captured and modularized
a great deal of the heuristic knowledge used to methodize Printed Wiring Boards. For
example, the knowledge base of manufacturing instructions is independent of the parts
used in production. This means that the Procedures Knowledge Base can be removed,
modified, expanded or applied to a different parts taxonomy. Similarly, the Agendas
(Process Flow) Knowledge Base and its underlying mechanisms and methods can be
extracted and used with completely different Parts and Procedures Knowledge Bases.

The Meth-Gen database is constantly expanding to include new parts. These parts are not
restricted to electrical parts. In the course of time, this database of part features will grow
to be an asset to AIL. The customized graphics tools that the methods analyst has available
to him are also not restricted to the development of PWB Work Instruction Packages.
These tools will be extended to other applications in the Methods Engineering Department.

Another area where we experience the benefits of modularity is the relative independence
of each phase of processing during PWB methodization. An analyst has the flexibility to
retrieve several Parts Lists from Engineering at once if, for example, he is aware that the
network will be down for maintenance. He can continue to methodize these assemblies
without interruption. If the expert system or the database is unavailable because of updates
to the software or new development activity, the analyst can continue to edit Work
Instruction Packages that have reached the stage of graphic editing.

An area where the extendibility of the Meth-Gen modules has been disappointing is in its
extendibility to three dimensional complex assemblies. We are currently trying to
understand how the methodization process for these complex assemblies can be modeled
after the processes used by PWB methodization. This will be done by reviewing the
similarities of methods described earlier. Also, the great deal of Lisp code will have to be
reviewed to understand the magnitude of modifications.

The related topic of robustness addresses the completeness of the solution. We have
successfully captured enough knowledge to methodize any given Printed Wiring Board
built at AIL to approximately 90 percent completion in a matter of a few hours.
The remaining 10 percent of effort is in the final editing of the Work Instruction Package
using the graphics tools. The fact that this small fraction of incompleteness takes almost as
much time to process as the initial phases of methodization indicates the relative
inefficiency of the task. At this point, we have reached the limit of the level of
functionality that makes sense to incorporate in the expert system. This forces us to rely
on the analyst's CAD skills while we seek improvements in the Work Instruction Package
editing phase. Note that this is not necessarily without value because these skills will be
employed when the graphic tools are used for other applications.

The benefits in using Meth-Gen are beginning to become apparent as the work instruction
Packages are being distributed to the shop floor. Preliminary evaluation indicates
improved throughput in the methods Engineering department because of a reduction in
cycle time. Each Work Instruction Package is being released with more consistent content,
regardless of the analyst who created it. We have seen that small changes can be made to
an Operation Sheet relatively quickly. Substantial changes are also responded to quickly
by completely re-methodizing the assembly (it is sometimes advantageous to utilize Meth-
Gen's efficiency by completely re-methodizing the assembly). Most importantly, the
quality of the Work Instruction Package that was modified to incorporate an ECN
is now the same quality as the original Work Instruction Package. The result, which is the
desired result, is that we will see fewer interpretation errors on the shop floor.

Meth-Gen has a variety of opportunities which can now be pursued. It can be used as a
front end to a paperless shop environment since its output is a document in electronic form.
It can be linked to the Computerized work measurement System to automatically retrieve
setup and run times for the production processes it calls out. We can incorporate these
standards in a sophisticated simulation of the production environment based upon the fact
that Meth-Gen knows each assembly's process flow. This can also be expanded to allow
Meth-Gen to generate optimal assembly routes based upon real time data from the shop
floor. And, of course, we expect to expand the use of Meth-Gen to other programs and
commodities.

